Oxidative coupling of methane by carbon dioxide: a highly C_2 selective La_2O_3/ZnO catalyst

Changlin Chen, Yide Xu¹, Guangjin Li and Xiexian Guo

State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, PO Box 110, Dalian 116023, PR China

Received 21 June 1996; accepted 16 September 1996

In the oxidative coupling of methane by carbon dioxide, La_2O_3/ZnO catalysts were found to have high C_2 selectivity and good stability. The coupling selectivity on La_2O_3/ZnO is about 90%, which is much higher than that on pure La_2O_3 or ZnO. The consumption ratio of carbon dioxide to methane is approximately one. X-ray diffraction analysis reveals that the structural forms of the oxides are unchanged during the reaction. The reaction mechanism for C_2 formation is discussed.

Keywords: carbon dioxide as the oxidant; oxidative coupling of methane; La₂O₃/ZnO

1. Introduction

The oxidative coupling of methane (OCM) to C₂ hydrocarbons is an attractive process for its potential industrial utilization of the world's abundance of natural gas resource. Extensive studies have been conducted since the work of Keller and Bhasin [1]. The OCM reaction over metal oxides by oxygen is effective, but the selectivity to C₂ hydrocarbons is not high enough because of the non-selective oxidation of methyl radicals with oxygen in the gas phase [2,3], especially when the concentration of oxygen is high [4]. However, active surface oxygen species are necessary for the initial step, i.e., hydrogen abstraction from methane. Thus, in order to avoid non-selective oxidation by oxygen, some novel processes have recently been proposed and are under investigation. One consists of modification of the reaction system, such as the use of a membrane reactor [5]. Another approach is the use of other oxidants which are much less active in the gas phase than O₂, such as CO₂ and/or H₂O [6,7], for the production of active surface oxygen species on metal oxides.

Carbon dioxide is of significance as a less active oxidant. In principle, it is widely reported in heterogeneous catalysis that CO_2 can be dissociatively chemisorbed on several metals and metal oxides surfaces to form CO and O^- adspecies [8]. The role of O^- species in OCM is well recognized [9,10]. Krylov and co-workers [11,12] have shown that carbon dioxide can be used as a selective oxidant for a variety of hydrocarbons on oxide catalysts, mainly based on manganese oxide. Unfortunately in the case of the CH_4 - CO_2 reaction, the authors claimed that methane is converted mainly into synthesis gas $(CO + H_2)$.

On the other hand, the recent interest in the carbon

dioxide reaction is sparked by the necessity to fight against the so-called green-house effect. From the point of view of solving and/or alleviating the green-house effect by chemical means, OCM by carbon dioxide is more important and practible than carbon dioxide hydrogenation. This is due to the fact that no hydrogen is needed and natural gas itself is a source of hydrogen and is abundant.

When carbon dioxide is used as the oxidant, the reactions for the formation of C_2 hydrocarbons from methane can be expressed as follows:

$$2CH_4 + CO_2 \rightarrow C_2H_6 + CO + H_2O$$
 (1)

$$2CH_4 + 2CO_2 \rightarrow C_2H_4 + 2CO + 2H_2O$$
 (2)

The equilibrium yield of C_2H_6 at 1073 K is 13% [12]. At the same time, the following side reactions of methane yielding CO are possible:

$$CH_4 + CO_2 \rightarrow 2CO + 2H_2 \tag{3}$$

$$CH_4 + 3CO_2 \rightarrow 4CO + 2H_2O \tag{4}$$

Reactions (3) and (4) are thermodynamically more favorable than reactions (1) and (2). Therefore, the problem of the OCM reaction with carbon dioxide is to find a catalyst which activates the methane molecule suitably to the reactions (1) and (2).

Aika and Nishiyama [9,13–15] have shown that the addition of CO₂ to the CH₄/O₂ reactant mixture can significantly enhance the yield of C₂ hydrocarbons over a broad range of catalysts, in particular PbO/MgO catalysts. It was concluded that the carbon dioxide is involved in the reaction as an oxidant, providing a monatomic oxygen species via degradation to carbon monoxide, However, when the CH₄–CO₂ reaction without O₂ is performed over PbO/MgO, the active life of the catalyst is short and the selectivity of C₂ hydrocar-

¹ To whom correspondence should be addressed.

bons is not high due to the formation of stable carbonate species on the catalyst at the reaction temperature [6].

Very recently, Asami et al. [16] found that methane reacts with carbon dioxide to form C₂ hydrocarbons over some pure rare earth catalysts which exhibit high C₂ selectivity of about 30% with stable catalytic activity. In our OCM study, Yu [17] found that La₂O₃/ZnO oxides are not sensitive to carbon dioxide addition at the reaction temperature of OCM. This means that at high temperature the surface of La₂O₃/ZnO is not covered with stable carbonate species. Xu et al. [18] demonstrated that different CO₂ adspecies could be formed on promoted rare earth oxides at different temperatures. Asha et al. [19] further showed that on oxygen-deficient LaO_x surfaces, the CO₂ adspecies could be thermally dissociated to yield gas-phase CO and O- adspecies leading to surface oxidation. All of these made us to think that on some properly supported and/or promoted rare earth oxides, improving the C₂ selectivity may be possible for the CH₄-CO₂ reaction. We found that, when methane and carbon dioxide were co-fed, La₂O₃/ZnO catalysts give a very high selectivity to C₂ hydrocarbons with fairly good catalytic stability. The objective of this communication is to report the results of selective synthesis of C₂ hydrocarbons from methane and carbon dioxide on La2O3/ZnO catalysts.

2. Experimental

2.1. Catalyst preparation and characterization

ZnO and La₂O₃ were prepared directly by calcining zinc oxide and lanthanum nitrate, respectively, while La₂O₃/ZnO was prepared by impregnating ZnO with lanthanum nitrate solution (all chemicals were analytical reagents). The powder or paste produced was dried at 383 K and then calcined in air at 1123 K for 5 h. The calcined samples were pressed, crushed and sieved to yield granules of 20-40 mesh. For the sake of simplicity, La₂O₃/ZnO catalysts with different La₂O₃ loading are expressed as xLZ, where x denotes the nominal content of La₂O₃ in weight percent. The surface area of the individual oxides and their mixtures was measured by N2 adsorption using the BET method. Phase composition of catalysts was determined by X-ray diffraction (XRD) (Cu K α line, Rigaku D/max RB) at room temperature. The operating conditions were 40 kV and 100 mA, and a scanning rate of 8 degree/min.

2.2. Catalytic evaluation

The reaction of methane and carbon dioxide was carried out in a fixed-bed flow reactor. The quartz reactor, 250 mm long and 6 mm i.d., was placed vertically in an electric furnace. 0.5 g of the catalyst sample (20–40 mesh) was held in place by a quartz wool plug and a thermocou-

ple was inserted in the catalyst bed. The catalyst was pretreated at 1123 K in He flow for 1.5-2 h (to prevent oxidation of methane by the remaining oxygen). After catalyst pretreatment, reactant gas (with a molar ratio of $CH_4/CO_2 = 2$) was introduced at a total flow rate of 30 ml/min. No dilute was used in all cases. The reaction temperature was 1123 K. The reactant and the reactor effluent were analyzed by an on-line gas chromatograph using a thermal conductivity detector and Porapak Q columns. Gas chromatographic data were processed according to the following assumption: the carbon in carbon dioxide is converted to carbon monoxide and the carbon in methane is converted to ethane, ethylene and carbon monoxide. This assumption is reasonable since the amount of other products such as carbon, acetylene and C₃₊ hydrocarbons is negligible. Then the conversion of methane and carbon dioxide and the C₂ selectivity are calculated as follows:

 $X_{\text{CH}_4} = (1 - \text{moles of CH}_4 \text{ out/moles of CH}_4 \text{ in}),$

 $X_{\text{CO}_2} = (1 - \text{moles of CO}_2 \text{ out/moles of CO}_2 \text{ in}),$

 C_2 selectivity = 2(moles of C_2H_4 + moles of C_2H_6)/ moles of CH_4 reacted,

 C_2 yield = methane conversion $\times C_2$ selectivity.

3. Results and discussion

3.1. BET surface area and XRD

Table 1 lists the composition of various La_2O_3/ZnO catalysts and their corresponding BET surface areas. The surface area of pure oxides is higher than that of mixed oxides. As expected, here all of the catalysts have low surface areas; this is beneficial for their stability of running a reaction at a temperature as high as 1123 K.

Fig. 1 shows the XRD patterns of various La_2O_3/ZnO oxides. The XRD results indicate that the crystal-line structure of La_2O_3 and ZnO still persists in La_2O_3/ZnO . These initial crystalline forms are retained in every

Table 1
Catalyst compositions and their BET surface areas

Catalyst a	Catalyst c	omposition (%)	Surf. area (BET) (m ² /g)
	ZnO	La_2O_3	(m / g/
ZnO	100	0	4.5
10 LZ	90	10	1.5
20 LZ	80	20	2.3
30 LZ	70	30	2.3
50 LZ	50	50	2.2
La ₂ O ₃	0	100	2.9

^a ZnO and La₂O₃ were prepared by calcining ZnO and La(NO₃)₃, respectively, at 1123 K for 5 h.

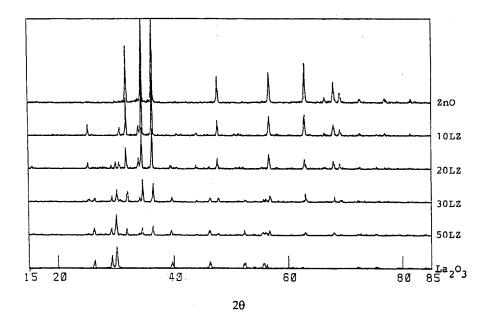


Fig. 1. XRD profile of La₂O₃/ZnO oxides.

case even after 10 h of reaction and no changes can be observed. This may imply that the overall reaction of CH_4-CO_2 does not sacrifice the lattice oxygen of the catalysts. In other words, carbon dioxide may act as an oxidant in the CH_4-CO_2 reaction over various La_2O_3/ZnO catalysts.

3.2. Catalytic evaluation

The catalytic activities of the CH₄–CO₂ reaction over various La₂O₃/ZnO catalysts are summarized in table 2. As shown in table 2, although the reaction was carried out at a temperature as high as 1123 K, the roles of various catalysts are obvious, but different. No reaction of methane with carbon dioxide is observed in the absence of catalyst. Pure ZnO gave a C₂ selectivity of 7.6%, while pure La₂O₃ gave a C₂ selectivity of 56.8%. In contrast, all La₂O₃/ZnO catalysts gave a C₂ selectivity of more

Table 2 Catalytic activities of the CH_4-CO_2 reaction over various $La_2O_3/\ ZnO\ catalysts\ ^a$

Catalyst	Conv. (%)		C ₂ (%)		C_2H_4/C_2H_6	Reacted CO ₂ /CH ₄ (mole/mole)
	CO ₂	CH4	sel.	yield		(mole/mole)
blank	0	0	_	_	_	_
ZnO	16.4	3.0	7.6	0.2	0.5	2.7
10 LZ	3.7	2.1	97.0	2.0	0.5	0.9
20LZ	6.8	3.1	90.6	2.8	0.7	1.0
30LZ	5.5	2.9	91.2	2.6	0.7	1.0
50LZ	5.3	2.5	90.7	2.3	0.6	1.0
La_2O_3	6.0	1.3	56.8	0.8	0.4	2.6

^a Reaction conditions: atmospheric pressure, temperature: 1123 K, flow rate: 30 ml/min, $CH_4/CO_2=2$ (mole ratio), catalyst charge: 0.5 g, pretreated in pure He at 1123 K for 1.5 to 2 h. The results presented were obtained after 4 h of reaction.

than 90%. As far as the conversion of methane and carbon dioxide is concerned, ZnO gave the highest conversion of CO₂ while La₂O₃ the lowest conversion of CH₄. LZ catalysts nearly maintain the methane conversion level as the same as for pure ZnO, but heavily suppress the CO₂ conversion level as compared with ZnO. It seems that the interaction between La₂O₃ and ZnO creates a new type of synergetic sites at the La₂O₃-ZnO interfacial area which offer the active and selective performance of the conversion of methane and carbon dioxide into C₂ hydrocarbons over La₂O₃/ZnO catalysts. There is a general tendency that the ethylene yield is lower than the ethane yield over every catalyst. The results of a high C2 selectivity and a low ethylene-toethane ratio are reasonable if we take into account that CO₂ is a much less active oxidant – once active oxygen species are formed, the concentration must be quite low. On the other hand, it must be highly efficient in the abstraction of one hydrogen atom from methane. Meanwhile on ZnO and La2O3, carbon dioxide and methane reacted with a molar ratio of about 2.6. On La₂O₃/ZnO catalysts, however, the consumption ratio of carbon dioxide to methane is about 1. A very small amount of hydrogen can be detected in the product so that reaction (3) is negligible. Therefore the total reacequation will be reaction (1) + reaction (2) + reaction (4) which can be expressed as follows:

$$2CH_4 + CO_2 \rightarrow C_2H_6 + CO + H_2O$$
 (1)

$$2CH_4 + 2CO_2 \rightarrow C_2H_4 + 2CO + 2H_2O$$
 (2)

$$CH_4 + 3CO_2 \rightarrow 4CO + 2H_2O \tag{4}$$

$$5CH_4 + 6CO_2 \rightarrow C_2H_6 + C_2H_4 + 7CO + 5H_2O$$
 (5)

It is clear from the above reactions that the higher the ratio of reacted CO_2 and reacted CH_4 on a catalyst, the lower the C_2 selectivity is. Our results indicate that the reaction of methane and carbon dioxide over La_2O_3/ZnO catalysts mainly proceeds via reaction steps (1) and (2), which correspond to the product selectivity to ethane and ethene, respectively, on the basis of the carbon in methane.

The changes in C_2 yield with time-on-stream over various La_2O_3/ZnO catalysts are shown in fig. 2. When the ratio of the Y_{C_2} values after 2 and 10 h may be used as an index for expressing the change with time, the values of Y_{C_2} (10 h)/ Y_{C_2} (2 h) on various catalysts are summarized in table 3. When the ratio is equal to 1, C_2 yield is unchanged with time. It is interesting to notice that on ZnO, C_2 yield increased gradually. On La_2O_3 and La_2O_3/ZnO catalysts, C_2 yield decreased very slightly with the progress of the reaction. This might be caused by the deposition of a very small amount of carbon on the catalysts.

3.3. The role of CO_2 in the reaction

In order to study the role of the lattice oxygen in the oxides, methane alone was passed over the 20LZ catalyst which was pretreated with pure He at 1123 K for 1.5 h. At the initial stages, a methane conversion of about 1.2% was observed with a C₂ selectivity of about 82%. Gradually, the catalytic activity decayed with time-onstream owing to oxygen loss from the catalyst and its color became dark gray. This color disappeared after the catalyst was calcined at 973 K in air and the catalytic activity was almost restored. Under CH₄-CO₂, the catalytic activity was only very slightly changed after 10 h reaction and the color of the catalyst remained white. Combining these results it seems that the oxygen species stored in the lattice of the La₂O₃/ZnO oxide is probably

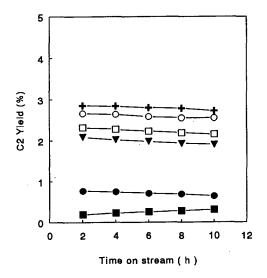


Fig. 2. Variation of C₂ yield with time-on-stream. (■) ZnO; (▼) 10LZ; (+) 20LZ; (○) 30LZ; (□) 50LZ; (●) La₂O₃.

Table 3 Variation of the values of Y_{C_2} (10 h)/ Y_{C_2} (2 h) of the CH₄-CO₂ reaction over various La₂O₃/ZnO catalysts ^a

Catalyst	Y_{C_2} (10 h)/ Y_{C_2} (2 h)		
ZnO	1.5		
10LZ	0.9		
20LZ	1.0		
30LZ	1.0		
50LZ	0.9		
La_2O_3	0.8		

a Reaction conditions; as shown in table 2.

responsible for methane activation and for the selective formation of C_2 hydrocarbons. Moreover, such kind of oxygen species can be reproduced via dissociative chemisorption of CO_2 on the oxide surface. The reactive oxygen species responsible for the selective formation of C_2 hydrocarbons are tentatively ascribed to be O^- from the initial dissociation of CO_2 .

Under the reaction conditions, La_2O_3 and ZnO may easily become non-stoichiometric oxides (e.g. LaO_x , ZnO_x), which may act as a transitional state. Au et al. [20] have demonstrated that on the defects (oxygen vacancies) of ZnO, the adsorption of CO_2 is remarkably enhanced. Recently, Asha et al. [19] have shown that on the oxygen-deficient (partially reduced) LaO_x surface there is a greater probability for irreversible adsorption of CO_2 , which then thermally dissociated leading to surface oxidation with the evolution of CO_2 .

All these findings suggest the possibility of a consumption-regeneration cycle of reactive surface oxygen species on La₂O₃/ZnO catalysts with co-fed methane and carbon dioxide as shown below:

$$O(surface) + 2CH_4 \rightarrow 2CH_3 \cdot + H_2O + \Box$$

$$2CH_3 \cdot \rightarrow C_2H_6$$

$$\Box + CO_2 \rightarrow O(surface) + CO$$

where \square represents a surface oxygen-deficient site.

The surface reactive oxygen species on La₂O₃/ZnO abstract hydrogen from methane to give methyl radicals, which in turn are converted to hydrocarbons. Carbon dioxide is then adsorbed on the oxygen-deficient surface. The adsorbed carbon dioxide is thermally dissociated to yield gas-phase CO and also leading to surface reoxidation.

On the basis of the above discussion, the reasons why La_2O_3/ZnO is effective for the CH_4-CO_2 reaction can be attributed to both the mobility of oxygen and the non-stoichiometry would be changed by combining La_2O_3 and ZnO on one hand and the concentration of the reactive surface oxygen species due to lattice distortion or defects is increased by the combination on the other hand.

Asami et al. [16] found that pure rare earth oxides such as yttrium oxide, lanthanum oxide and samarium

Table 4
Catalytic activities of the CH₄–CO₂ reaction over some ZnO-supported rare earth oxides ^a

Catalyst	Conv. (%)		C ₂ (%)		Reacted CO ₂ /CH ₄ (mole/mole)
	CO_2	CH ₄	sel.	yield	(
20% La ₂ O ₃ /ZnO	6.8	3.1	90.6	2.8	1.02
$20\% Y_2O_3/ZnO$	26.8	5.6	2.9	0.2	2.40
$20\%Sm_2O_3/ZnO$	26.0	5.3	3.6	0.2	2.40

^a Reaction conditions: as shown in table 2.

oxide showed high C_2 selectivity of about 30% with stable catalytic activity in the CH_4 – CO_2 reaction. However, the corresponding ZnO-supported rare earth oxide catalysts have extremely different C_2 selectivity. For comparison, several typical results are shown in table 4. On Y_2O_3/ZnO and Sm_2O_3/ZnO , the main product is CO with a trace amount of C_2 hydrocarbons. This is quite different from that of La_2O_3/ZnO . The different results obtained may be due to the different type of interaction between the rare earth oxides and ZnO. Further study is necessary to reveal the reason.

Methane reacts with the reactive oxygen species on the catalyst surface through the reverse shift reaction of CO_2 . The redox nature of the catalyst may be important to yield the reactive oxygen species from CO_2 . Further investigation is now underway to explore the factors affecting the production of active oxygen species which favor C_2 hydrocarbons formation on oxide surface via CO_2 dissociation.

4. Conclusion

 La_2O_3/ZnO catalysts exhibit high coupling selectivity for the oxidative coupling of methane with carbon dioxide as the oxidant. About 90% of the carbon in methane was converted to C_2 hydrocarbons, the rest to carbon monoxide. The ratio of reacted carbon dioxide to methane is approximately one. The chemical forms of the oxides are unchanged during the reaction.

In the oxidative coupling of methane by carbon dioxide, the consumption-regeneration cycle of surface reactive oxygen species may be as follows: (1) the surface oxygen species of La_2O_3/ZnO abstract hydrogen from

methane to give methyl radicals which in turn are converted to hydrocarbons; (2) carbon dioxide oxidizes oxygen-deficient (partially reduced) catalysts.

Acknowledgement

The financial supports from the National Natural Science Foundation of China and the National Postdoctoral Research Foundation of China are gratefully acknowledged.

References

- [1] G.E. Keller and M.M. Bhasin, J. Catal. 73 (1982) 9.
- [2] J.S. Lee and S.T. Oyama, Catal. Rev. Sci. Eng. 30 (1988) 249.
- [3] A.M. Maitra, Appl. Catal. 104 (1993) 11.
- [4] A. Ekstrom, R. Regtop and S. Bhargava, Appl. Catal. 62 (1990)
- [5] K. Omata, S. Hashimoto, H. Tominaga and K. Fujimoto, Appl. Catal. 52 (1989) L1.
- [6] K. Asami, T. Shikada and K. Fujimoto, Bull. Chem. Soc. Jpn. 64 (1991) 266.
- [7] X. Li, K. Tomishige and K. Fujimoto, Catal. Lett. 36 (1996) 21.
- [8] D.O. Hayward and B.M.W. Trapnell, *Chemisorption*, 2nd Ed. (Butterworths, London, 1964).
- [9] K. Aika and T. Nishiyama, in: Proc. 9th Int. Congr. on Catalysis, Calgary 1988, Vol. 2, eds. M.J. Phillips and M. Ternan (The Chemical Institute of Canada, Ottawa, 1988) p. 907.
- [10] J.H. Lunsford, in: Natural Gas Conversion II, Stud. Surf. Sci. Catal., Vol. 81, eds. H.E. Curry-Hyde and R.F. Howe (Elsevier, Amsterdam, 1994) p. 1.
- [11] O.V. Krylov, A.Kh. Mamedov and S.R. Mirzabekova, in: New Developments in Selective Oxidation II, eds. V. Cortés Corberan and S.Vic Bellón (Elsevier, Amsterdam, 1994) p. 159.
- [12] O.V. Krylov, A.Kh. Mamedov and S.R. Mirzabekova, Catal. Today 24 (1995) 371.
- [13] K. Aika and T. Nishiyama, J. Chem. Soc. Chem. Commun. (1988) 70.
- [14] K. Aika and T. Nishiyama, Catal. Today. 4 (1989) 271.
- [15] T. Nishiyama and K. Aika, J. Catal. 122 (1990) 346.
- [16] K. Asami, T. Fujita, K. Kusakabe, Y. Nishiyama and Y. Ohtsuka, Appl. Catal. 126 (1995) 245.
- [17] L. Yu, PhD Thesis, Dalian Institute of Chemical Physics, PR China (1994).
- [18] Y. Xu, L. Yu, C. Cai, J. Huang and X. Guo, Catal. Lett. 35 (1995) 215.
- [19] A.M. De Asha and R.M. Nix, J. Chem. Soc. Faraday Trans. 91 (1995) 3611.
- [20] C.T. Au, W. Hirsch and W. Hirschwald, Surf. Sci. 197 (1988)